Comparative Molecular Profiling of the PPARα/γ Activator Aleglitazar: PPAR Selectivity, Activity and Interaction with Cofactors
نویسندگان
چکیده
Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear hormone receptors that control the expression of genes involved in a variety of physiologic processes, through heterodimerization with retinoid X receptor and complex formation with various cofactors. Drugs or treatment regimens that combine the beneficial effects of PPARα and γ agonism present an attractive therapeutic strategy to reduce cardiovascular risk factors. Aleglitazar is a dual PPARα/γ agonist currently in phase III clinical development for the treatment of patients with type 2 diabetes mellitus who recently experienced an acute coronary event. The potency and efficacy of aleglitazar was evaluated in a head-to-head comparison with other PPARα, γ and δ ligands. A comprehensive, 12-concentration dose-response analysis using a cell-based assay showed aleglitazar to be highly potent, with EC(50) values of 5 nM and 9 nM for PPARα and PPARγ, respectively. Cofactor recruitment profiles confirmed that aleglitazar is a potent and balanced activator of PPARα and γ. The efficacy and potency of aleglitazar are discussed in relation to other dual PPARα/γ agonists, in context with the published X-ray crystal structures of both PPARα and γ.
منابع مشابه
Comparative Transcriptional Network Modeling of Three PPAR-α/γ Co-Agonists Reveals Distinct Metabolic Gene Signatures in Primary Human Hepatocytes
AIMS To compare the molecular and biologic signatures of a balanced dual peroxisome proliferator-activated receptor (PPAR)-α/γ agonist, aleglitazar, with tesaglitazar (a dual PPAR-α/γ agonist) or a combination of pioglitazone (Pio; PPAR-γ agonist) and fenofibrate (Feno; PPAR-α agonist) in human hepatocytes. METHODS AND RESULTS Gene expression microarray profiles were obtained from primary hum...
متن کاملStandardized Punica Granatum Pericarp Extract, Suppresses Tumor Proliferation and Angiogenesis in a Mouse Model of Melanoma: Possible Involvement of PPARα and PPARγ Pathways
Melanoma is a challenging disease to treat. Punica granatum L. has a potential anticancer effect. This study determined the antiproliferative and antiangiogenic potential of the extract from pomegranate peel (PPE) in melanoma. Melanoma cells (1 × 106) were injected to C57BL6 mice subcutaneously. On 8th day, mice were randomly divided into 9 groups. Group 1 was considered as control and received...
متن کاملStandardized Punica Granatum Pericarp Extract, Suppresses Tumor Proliferation and Angiogenesis in a Mouse Model of Melanoma: Possible Involvement of PPARα and PPARγ Pathways
Melanoma is a challenging disease to treat. Punica granatum L. has a potential anticancer effect. This study determined the antiproliferative and antiangiogenic potential of the extract from pomegranate peel (PPE) in melanoma. Melanoma cells (1 × 106) were injected to C57BL6 mice subcutaneously. On 8th day, mice were randomly divided into 9 groups. Group 1 was considered as control and received...
متن کاملPeroxisome Proliferator-activated Receptor (PPAR)-γ Modifies Aβ Neurotoxin-induced Electrophysiological Alterations in Rat Primary Cultured Hippocampal Neurons
Alzheimer’s disease (AD) is undoubtedly one of the serious and growing public health challenges in the world today. There is an unmet need for new and effective preventative and therapeutic treatment approaches for AD, particularly at early stages of the disease. However, the underlying mechanism against Aβ-induced electrophysiological alteration in cultured hippocampal pyramidal neurons is st...
متن کاملPeroxisome Proliferator-activated Receptor (PPAR)-γ Modifies Aβ Neurotoxin-induced Electrophysiological Alterations in Rat Primary Cultured Hippocampal Neurons
Alzheimer’s disease (AD) is undoubtedly one of the serious and growing public health challenges in the world today. There is an unmet need for new and effective preventative and therapeutic treatment approaches for AD, particularly at early stages of the disease. However, the underlying mechanism against Aβ-induced electrophysiological alteration in cultured hippocampal pyramidal neurons is st...
متن کامل